Dr Maria Perez-Madrigal

Office: 409

Lab: 715

Maria M. Pérez-Madrigal received her BSc degree in Chemical Engineering (2010) and her MSc degree in Polymers and Biopolymers (2011) at the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. In 2010, she joined the ‘‘Innovation in Materials and Molecular Engineering’’ (IMEM) group in the Chemical Engineering Department (UPC). Under the supervision of Prof. Carlos Alemán and Dr. Elaine Armelin, she conducted her PhD and graduated in 2015. Her research focused on combining conducting polymers (CPs) with conventional polymers to obtain biointerfaces at the nanoscale for bioapplications. After a post-doctoral year in the IMEM group working on supercapacitor devices based on CPs and hydrogels, she has joined the Dove group as a Marie-Curie Fellow for developing polycarbonate-based hydrogels as scaffolds for load-bearing soft tissue regeneration.

Publications

17) DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems. Haering, M.; Perez-Madrigal, M. M.; Kuehbeck, D. et al. Molecules (2015), 20, 4136-4147.

16) Electroactive and bioactive films of random copolymers containing terthiophene, carboxyl and Schiff base functionalities in the main chain. Perez-Madrigal, M. M.; Cianga, Luminita; del Valle, L. J.; et al. Polym. Chem. (2015) 6, 4319-4335.

15) Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. Perez-Madrigal, M. M.; Armelin, E.; Puiggali, J.; et al. J. Mater. Chem. B (2015) DOI: 10.1039/C5TB00624D

14) Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds. Planellas, M.; Perez-Madrigal, M. M.; del Valle, L. J.; et al. Polym. Chem. (2015) 6, 4

13) Polypyrrole-Supported Membrane Proteins for Bio-Inspired Ion Channels. Perez-Madrigal, M. M.; del Valle, L. J.; Armelin, E.; et al. ACS Appl. Mater. Interface. (2015), 7, 1632-1643.

12) Self-Assembly of Tetraphenylalanine Peptides. Mayans, E.; Ballano, G.; Casanovas, J.; et al. Chem. Eur. J. (2015) 21, 16895-16905.

11) Composites based on epoxy resins and poly(3-thiophene methyl acetate) nanoparticles: mechanical and electrical properties. Pérez-Madrigal, M. M.; Armelin, E.; Azambuja, D. S.; et al. Polym. Composite. (2014) DOI: 10.1002/pc.23230.

10) Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane. Perez-Madrigal, M. M.; Giannotti, M. I.; Armelin, E.; et al. Polym. Chem. (2014) 5, 1248-1257.

9) Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds. Llorens, E.; Perez-Madrigal, M. M.; Armelin, E.; et al. RSC Adv. (2014) 4, 15245-15255

8) Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. Perez-Madrigal, M. M.; Giannotti, M. I.; del Valle, L. J.; et al. ACS Appl. Mater. Interface. (2014), 6, 9719-9732

7) Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Perez Madrigal, M. M.; Giannotti, M. I.; Oncins, G.; et al. Polym. Chem. (2013) 4, 568-583.

6) Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Llorens, E.; Armelin, E.; Perez-Madrigal, M.; et al. Polymers (2013) 5, 1115-1157 .

5) Nanometric ultracapacitors fabricated using multilayer of conducting polymers on self-assembled octanethiol monolayers. Aradilla, D.; Perez-Madrigal, M. M.; Estrany, F.; et al. Org. Electronics (2013) 14, 1483-1495.

4) Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene. Ahumada, O.; Perez-Madrigal, M. M.; Ramirez, J.; et al. Rev. Sci. Instrum. (2013) 84, DOI: 10.1063/1.4804395.

3) Bioactive and electroactive response of flexible polythiophene: polyester nanomembranes for tissue engineering. Perez-Madrigal, M. M.; Armelin, E.; del Valle, L. J.; et al. Polym. Chem. (2012) 3, 979-991.

2) Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Armelin, E.; Gomes, A. L.; Perez-Madrigal, M. M.; et al. J. Mater. Chem. (2012) 22, 585-594.

1) The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. Kaali, P.; Perez-Madrigal, M. M.; Stromberg, E.; et al. Express Polym. Lett. (2011) 5, 1028-1040.